Under review as a conference paper at ICLR 2025

METATOOL: FACILITATING LARGE LANGUAGE MOD-
ELS TO MASTER TOOLS WITH META-TASK AUGMEN-
TATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Utilizing tools with Large Language Models (LLMs) is essential for
grounding Al agents in real-world applications. The prevailing ap-
proach involves few-shot prompting with demonstrations or fine-tuning
with expert annotations. However, mere in-context demonstrations may
fail to cover sufficient knowledge for complex tools and tasks. Training
on solution paths is also hindered by the high cost of expert annotations
and generalizing to new tools. A core challenge of generalizable tool
use lies in understanding the “meta”, or fundamental natures of tools
that are transferable across tasks, such as causality and constraints. In
this paper, we present MetaTool, a novel tool learning methodology de-
signed to generalize across any reusable toolset. Our approach incor-
porates a self-supervised augmentation technique derived from a series
of meta-tasks. This involves predicting masked elements in the tool
execution process. The self-supervised procedure enables scalable gen-
eration of high-quality QA data, which is handy for supervising tool
understanding. By incorporating meta-task data into task-oriented train-
ing, our method significantly enhances the performance of open-source
LLMs, achieving results comparable to ChatGPT in both tool-based
planning and chatting scenarios. Through large-scale instruction tuning,
the MetaTool model demonstrates impressive zero-shot generalizability
on new tasks.

1 INTRODUCTION

Distinguished from other species, a unique characteristic of human advanced intelligence is using
complex tools, which expands the frontiers neural intelligence can reach. With the advent of power-
ful foundation models, Al has the potential to solve complex tasks with these external mechanisms.
LLMs have been majorly oriented towards either tool-augmented chatbots equipped with retrievers
and search engines, or tool-oriented agents (e.g. web navigation Rawles et al.[(2023); Hong et al.
(2024), embodied manipulation (Chi et al.| (2023))) that achieve task objectives through tool output
Qin et al.[(2023b). While the former emphasizes generalizing to various tools, the latter focuses on
complex tools and scenarios.

To efficiently integrate LLMs with tools, a mainstream way relies on in-context learning (ICL). The
model is provided with the “cookbook™ of tools in zero-shot prompting or demonstrations in few-
shot prompting | Xu et al.| (2023); Paranjape et al. (2023)); Brown et al.[(2020). It may work well
on simple tools with frameworks like LangChain |Chase| (2022). However, for complex tasks with
sophisticated tools, in-context learning is limited that demonstrations can not exhaust all scenarios,
and manuals are also limited in length. Ultimately, it’s impractical to expect LLMs to be intelligent
enough to master any tool without the experience of using it. On the other side, training-based
methods |Qin et al.| (2023c)); [Patil et al.| (2023)); Dubey et al.| (2024) mainly adopt supervised fine-
tuning with annotated expert solutions. Despite the difficulties in scaling up the optimal annotation,
supervision with task solutions has limitations. Task-agnostic knowledge of tools can be neglected,
which hinders the generalization to diverse scenarios or new tools. Self-play training methods like
Toolformer [Schick et al.[|(2024) and TALM |Parisi et al.[(2022) integrate the inference process with

Under review as a conference paper at ICLR 2025

complex objective . meta-task data
P) task solutions from experts

task-agnostic

task-oriented

Learning from tool manual Learning from task-oriented solutions Learning from meta-tasks

In-context Learning Instruction Tuning Instruction Tuning/Fine-tuning

Figure 1: Paradigm comparison between existing tool learning methods and proposed meta-task
augmentation. While the prevailing methods are limited in generalizing to complex scenarios or new
tools, MetaTool enables gaining transferable tool understanding from task-agnostic knowledge.

self-supervised tool calling data. Although such a manner maintains the generality of tool calling,
it’s constrained in question-answering scenarios.

Empirically, human learners get familiar with tools such as hammers (e.g., for nailing and smash-
ing) before engaging in complex construction. Generalizable tool use should be achieved based on
the fundamental understanding of tools themselves that holds stable for different objectives, namely
task-agnostic (illustrated in Figure[T] Naturally the formation of tool understanding can be disentan-
gled from the learning of task solving. In this paper, we introduce MetaTool, a general methodology
that enables both complex tool mastery and unseen tool generalization on top of task-agnostic tool
understanding. We design a set of meta-tasks inquiring about the causality of the toolset as an au-
tonomous system and its functionality as a function. Given a callable toolset (e.g. APIs, functions),
meta-task data is constructed in a scalable self-supervised way based on unsupervised or self-play
tool executions. Augmenting task-oriented training with meta-task data, LLMs learn to solve prob-
lems while deepening the mastery of tools. We conduct experiments on both complex tool-oriented
tasks and tool-augmented benchmarks, demonstrating that MetaTool significantly exceeds models
trained merely on annotated solutions in both worlds and is competitive with the latest LLMs (Chat-
GPT) with the size of 8B. The overall contribution can be summarized in three-folds:

* We introduce a new tool learning method that facilitates LLMs to master tools with task-
agnostic tool understanding.

* We propose an integral set of self-supervised meta-tasks that dissect the tool execution
process. Meta-tasks enable expert-free data generation and augmentation across tool-
augmented and tool-oriented scenarios.

* Extensive evaluation on both tool-oriented tasks and tool-augmented benchmarks demon-
strates the effectiveness and generality of MetaTool, narrowing the gap between open-
source models and state-of-the-art LLMs.

2 APPROACH

In this section, we first formalize the task of using a close toolset and define 6 general meta-tasks that
are key to tool understanding. Then we show how to construct datasets in an integral self-supervised
way covering different scenarios. In the end, we describe several schemes to augment tool learning
with meta-tasks.

Under review as a conference paper at ICLR 2025

Unsupervised Tool Data Self-supervised Meta-tasks

Current State S . Current State S
Action Space 4

a 3
Toolset 2 { ion Toolset

vaiid or not?®

Effect Input Boundary
Current State s

Toolset T

Current State S Current State S
feasible or not?
PP .
ST TS
? Toolset @

a
tool action

Action Space A State Space § Decision-making State Space S
Output Boundary
?
Tool Execution Process
- ! /"
tool action Toolset $
imaginary action @'
Reversion Counterfact

Figure 2: Illustration of developing self-supervised meta-tasks from unsupervised tool execution
process.

2.1 SELF-SUPERVISED META-TASKS FOR TOOL UNDERSTANDING

Problem formalization. A tool-use task can be generally defined as a Markovian tuple (S, A, T, g),
where S, A, T is the state space, action space, and toolset, and g is the goal state of the task. Toolset
T = {t}n consists of N tools, each as a state transition function s’ = ¢(s, #) that formalizes the
outcome of state change when feeding the input parameters 6 into the tool. An actiona = (¢,0) € A
specifies the tool and its input. As an autonomous agent, an LLM should iteratively respond with
tool calling and inputs according to the state until it reaches the goal. A solution path leading to the
goal can be defined as a sequence of actions and states p = {s1, a1, ..., s7, ar } € P. Broadly, when
the tools can not alter any external state, tool output like retrieval results can be regarded as the state,
and the desired information is the goal g.

We enhance the tool understanding of the model with self-supervised surrogate (pretext) tasks in-
stead of in-context descriptions or demonstrations. Formally, we regard tools as external systems
that implement state transition mappings. Tool understanding, therefore, involves comprehending
the perception-action process of these systems (referred to as tool execution) and should be general-
izable to various task objectives.

Meta-task definition. We begin with single-step tool execution D = {s, a, s’ }, peeling off the task
goal g context, which results as unsupervised data. Six surrogate tasks (meta-tasks) are designed
based on the dataset D. Basically, the model is required to predict masked elements of the execution
process. It’s similar with the idea of masked language models [Devlin/ (2018) in a broader and
structural granularity to learn the lurking knowledge beneath the unsupervised data. We define the
meta-tasks as below (Figure [2):

* Effect: The model predicts the outcome state P(s'|a, s) given the initial state and the ac-
tion.

* Decision-making: The model decides a feasible action P(a|s, s’) given the initial and
outcome state.

* Reversion: The model deduces the initial state P(s|a, s’) given the action and the outcome
state.

* Input Boundary: The model determines whether an action can be successfully exe-
cuted, namely whether the action falls in the valid action space, given the current state:
P(1ssla, s).

* Output Boundary: The model determines whether a state can be reached with any action
given the current state: P(13(;,0),s/—t(s,0)|5, 5)-

* Counterfact: The model predicts the new outcome state P(s”|a, s’, a’) if a new action o’
were executed given that the current action a results in the current outcome s’.

Under review as a conference paper at ICLR 2025

1. Generating unsupervised 2. Masking & Modifying

Tool Execution data D Tool Execution — Meta-task Data M

Callable Toolsets T —>

Q: How to hold block in hand

a;: pick_up(block D. :
robotic arm it pick_up() x; : How to achieve <S{> when (s;)? when it’s on the table?
s;: block on table, hand empty D i . R
Tn-ri Vit (ai). A: Call pick_up with argument
s;: block in hand “block’.
E ,
X1 What’s the outcome of (a;)? Q: Is feeding forecast with
a;: forecast(New York, Oct. 2) E. (g “New York” and “Oct. 2” valid?
weather API : ' RV - /Il get the predicti
S5 null S}[: sunny I . lid > A: Yes, you’ll get the prediction
Taug 2k Is executing (ai) VELle) © of New York’s weather on Oct. 2,

y;: <sj * s]’> such as sunny.

Figure 3: Two-step approach to construct metaset. We illustrate two exemplified processes of
both tool-oriented and tool-augmented scenarios, which don’t require any expert annotation. =, y’
denotes the i-th question-answer pair of decision-making meta-task, et cetera.

Effect, decision-making, reversion meta-tasks emphasize the causality of a tool, regarding the action
as the intervention to the state [Pearl|(2009); Pearl & Mackenzie|(2018)) and the outcome as the causal
effect is determined by the tool mechanism. On top of that, counterfact task is the composition of
reversion and effect, further imagining the outcome altered from the fact in effect task. This meta-
task raises higher requirements on counterfactual reasoning Bareinboim et al.| (2015); Zhang &
Bareinboim|(2016), an advanced form of causal reasoning that humans use to contemplate *what if”.
Moreover, tools implemented as APIs may receive non-executable inputs and result in ineffective
outcomes. Thus the input and output domains are also unique features of a tool as a function. We
consider input boundary meta-task that emphasizes the tool affordance that refers to what actions can
be executed considering the situation and the precondition. output boundary meta-task emphasizes
the functionality of tools, that is, what goals can and cannot be achieved given the current state.

2.2 METASET CONSTRUCTION

Based on the definitions, the dataset of meta-tasks (referred to as metaset) is generated as question-
answering pairs to maintain the conversational skills of LLMs. To answer the meta-task questions,
the trained model needs to understand the toolset mechanisms from the corresponding aspects.
Given a set of reusable and callable tools 7', the metaset M = {z™, y™}_, can be constructed
in two steps, as illustrated in Figure [3] where z]*, ;" is the n-th question-answer pair of meta-task
m. First, we generate tool execution data D with the toolset. For a limited amount of tools and
state space, stochastic sampling can be applied to initialize state s ~ P(S) and action a ~ P(A),
and obtain the tool output s’. For large toolsets and diverse task scenarios that are hard to enu-
merate, we incorporate LLMs with self-play or tree search techniques to reduce redundant trials
a,s’ ~ P(LLM(s, g)). We prompt the LLM to also generate a “thought” analyzing the situation
and what to do for each action following ReAct |Yao et al.| (2022), to elicit the reasoning ability.
Thus an action includes the tuple of thought-tool-input. Note that the LLM does not need to be pro-
ficient in tool tasks, as the execution data D is irrelevant to the task performance. Non-executable
actions also contain valuable knowledge and can be transferred as invalid samples in input boundary
meta-task. The tool execution data should be sufficient to cover the various scenarios that may arise
during the tasks.

Second, for the n-th sample and meta-task m, we insert the variables of states and actions into K
sets of templates (diversified with GPT-4) to obtain diverse QA data.

(x7",y") = Mask(ay, Sn, s, P1), (1)

where ®7" is the sampled template for meta-task m. Particularly, in tool-augmented scenarios,
predicting the output of tools such as QA systems can be impractical. Nonetheless, the retrieval
result itself is inherently meaningless (e.g., ’sunny’); however, it gains complete significance when
combined with the context of tool calling (e.g., 'the weather in New York is sunny’), as showcased in
Figure 3] Thus we modify the context into a more informative state in such scenarios by prompting

Under review as a conference paper at ICLR 2025

LLMs s¥ = LLM(s!,, an, t), which is trivial for most language models. At last, we arrange multiple
metaset pairs of the same toolset into multi-turn QA data as the metaset M, in order to maintain
multi-turn dialogue capacity.

2.3 TooL LEARNING AUGMENTED WITH META-TASKS

By incorporating meta-task data, we explore several approaches to augment the tool learning for the
purpose of achieving task objectives: a) In-context learning: We randomly sample several demon-
strations of each meta-task and add them to the system prompt to facilitate tool understanding in
a training-free manner. Such task-agnostic knowledge includes the interpretation of rules, supple-
menting the solution demonstrations. b) 2-stage learning: Since we aim to build the model’s tool
understanding as the foundation of tool-oriented learning, an intuitive idea is to train the LLM first
on the metasets as the surrogate tasks and then on the solution data P. In order to maintain the
general ability of the model in the first stage, only the parameters of the query and value projection
layers of the Transformer are updated instead of targeting all modules. c) Data augmentation: In
this approach, we utilize the metaset as the augmented data of conventional instruction tuning meth-
ods that the metasets are mixed with solution data and the model is trained uniformly. The model
trained on the mixed data is referred to as MetaTool.

3 EXPERIMENTS

In this section, we evaluate our approach in both tool-oriented agent and tool-augmented chatbot
scenarios. On the one hand, we fine-tune the LLM to master a specific toolset for achieving various
complex objectives. On the other hand, we conduct large-scale instruction tuning to enable the
model to generalize to new tasks and understand new tools through zero-shot documentation.

3.1 TOOL-ORIENTED SCENARIOS

3.1.1 TASK SETUP

We adopt 3 tool-oriented tasks that emphasize complex tool execution and sequential plan-
ning. Among them SAW is newly designed while the other two are introduced from PlanBench
Valmeekam et al.[(2024). The key challenge of these tasks is to understand the rules (preconditions)
and the environmental dynamics caused by actions. The task definition and dataset construction are
elaborated below.

SpellAnyWord (SAW). In this task, the agent needs to sequentially construct a string that contains
the target string as a continuous substring. The initial state of the task is a void string. Two non-
degradable tools (functions) are avaliable: Add: to add two adjacent letters in the alphabet to the
end of the current string. The tool input 6 should be the preceding letter (e.g. passing ’a’ to Add
on current string ~ will result in ’ab’). Swap: to swap the position of two adjacent letters in the
current string. The input should be the preceding letter (e.g. passing ’a’ to Swap on ’ab’ will
result in 'ba’). An example task: The target string is ’any’. A successful action sequence can
be [Add(’a’), Add(’n’), Add(’y’), Swap(’a’), Add(’0’)], which will result in a state sequence [’ab’,
’abno’, ’abnoyz’, ’banoyz’, ’banyoz’] and the final string *banyoz’ has ’any’ as a substring. To
eliminate the basis from tokenization, we format each string as a list of letters in prompts throughout
the task.

BlocksWolrd (BW). In this scenario, the agent needs to stack several blocks on the table into a target
state with one hand. Only one block can be moved at a time. Two tools (functions) are avaliable:
Pick: to pick a block in the hand. The tool input should be the target block indicated by its color
(e.g. Pick(’yellow’)). Blocks cannot be picked if there are blocks on top of them or there’s already
a block in the hand. Stack: to stack the block in the hand onto the target block or table. The input
should be the color of the target block or ’table’ (e.g. Stack(’white’), Stack(’table’)). Blocks cannot
be stacked on a block with another block already on top of it or there’s no block in the hand.

Logistics (LOG). The agent needs to solve a logistics problem by arranging trucks and airplanes to
transport the package to the target location. Locations are grouped by cities. Trucks can be used to
move packages between locations in the same city and planes can be used to move packages between

Under review as a conference paper at ICLR 2025

Models [SAW[BW |[LOG "E'ph R 1 0 C S|SAW|BW |LOG
ChatGPT 226 (233 504

5 2701 11.
ChatGPT-ICL 202|205 36 X s ool oo
GPT-4 286 430 466 < 73 1350 210
GPT-4-ICL 274|400 37.0 « 73 1350 180
Vicuna-7b 48 |55 00 x 16.1 |32.0| 6.0
LLaMA3-8b-instruct | 6.0 | 6.7 | 6.0 X 19.6 |37.0| 14.0
LLaMA3-solution | 9.5 |192| 82 x| 155 [310] 100
LLaMA3-ICL 48 |178] 20
LLaMA3-2stage | 95 |219| 123 L Y Y Y ¥ V[321]375] 301
MetaTool (3B) 32.1 375 30.1

Table 2: Ablation on tool-oriented tasks. E: ef-
fect meta-set, D: decision-making meta-set, R: Re-
version meta-set, [: input boundary meta-set, O: out-
put boundary meta-set, C: counterfact meta-set, S:
solution dataset. The crossings denote removing the
training data of the corresponding meta-tasks.

Table 1: Results on tool-oriented tasks.
ICL: in-context learning with meta-task
demonstrations. ChatGPT and GPT-4 are
provided with tool documentation and few-
shot demonstrations.

cities. Two tools (functions) are available: Truck: to transport the truck and the package (if there is
any) from one location to another. Plane: to transport the airplane and the package (if there is any)
from one location to another. The tool input should be the starting and ending location indicated by
numbers. (e.g. Truck(1,2), Plane(2,4)). An action is invalid when there is no truck or airplane at the
starting location.

Datasets collection. For the SAW task, we randomly sample 2k target strings (from 2 letters to 10
letters) as task goals. We modify the BlocksWorld and Logistics tasks from PlanBench into the tool-
use version, thus 2k goals for each task are adopted following the original configuration. Optimal
action sequences are obtained with heuristic strategy as the solution data.

3.1.2 IMPLEMENTATION DETAILS

Our model is fine-tuned based on LLaMA3-8b-instruct /Al@Metal (2024) with parameter-efficient
fine-tuning method Qlora Dettmers et al.|(2024) on 8 A100 GPUs. We utilize the instruction tuning
version of LLaMA3 since comprehending tool-oriented tasks with specific objectives is the basis
of tool understanding and use. For each task, we train the model on 10k meta-task data and 10k
solution data for 3 epochs with AdamW optimizer and the learning rate of 2e-4. The models are
tested in a simulated environment that receives the action of using a tool and returns the outcome
and current state. We evaluated the model performance on 100 unseen cases of each three tasks.

Baselines. We evaluate several baselines to study the effect of different training approaches (il-
lustrated in Figure |1| and described in Section 2.3).(1) LLaMA3-solution: training the base model
LLaMA3-8B-instruct merely on the solution data P.(2) LLaMA3-ICL: prompting the base model
with few-shot meta-task demonstrations (examples shown in Figure [3|and Figure [).(3) LLaMA3-
2-stage: training the base model first on meta-tasks data M then on solution data P.

3.1.3 RESULTS ANALYSIS

Overall comparison. We evaluate the success rate (SR%) of completing each task and show the
performances of several models in Table |1} Overall, SOTA closed-source LLMs show impressive
zero-shot performance on tool-oriented tasks compared with open-source LLMs including LLaMA3
and Vicuna. By training on both meta-tasks and solution data, our model MetaTool gains significant
improvement (+20.9%SR on average) compared with mere training on solution data (LLaMA3-
solution). MetaTool also surpasses GPT-4/ChatGPT in the SAW/BW tasks (+3.5%/14.2%SR).
ChatGPT represents the model of GPT-3.5-turbo-16k throughout our experiments. Both GPT and
LLaMA3 show weaker performances when provided with meta-task demonstrations (ICL) since
demonstrating limited cases can be redundant or misleading without proper design. LLaMA3-2-
stage that trained on meta-tasks first gains limited improvement compared with the baseline. We
conjecture that learning meta-tasks without practicing tool use (training on action sequences) cannot

Under review as a conference paper at ICLR 2025

effectively facilitate tool-use ability with tool understanding. Also fine-tuning with specific QA data
may affect the basic linguistic ability of the model. The overall results show that LLMs (includ-
ing the most powerful ones like GPT-4) still have difficulties conquering complex tool using tasks,
especially in planning with tools.

Ablation study. We study the ablation of different data components and report the performances in
Table 2] It’s worth noticing that merely training on meta-tasks can improve the model’s zero-shot
performance on tool-oriented tasks (line 7), contrary to providing demonstrations of meta-tasks in
the system prompt (LLaMA3-ICL in Table [I). When removing QA data from each meta-task, the
model performance shows varying degrees of degradation, which verifies the profits of meta-tasks.
The meta-tasks of effect and decision-making have a relatively greater influence on the model’s tool
understanding capability. Theoretically, these meta-tasks emphasize the causal mechanism of tools
that is more fundamental than others.

3.2 TOOL-AUGMENTED SCENARIOS

Among the various tool/function calling benchmarks, we study our method on two of the most
influential ones: ToolBench |Qin et al.|(2023c)) and Berkeley Function Calling Leaderboard (BFCL)
Yan et al.| (2024). Training approaches for baselines and implementation details remain the same
with tool-oriented scenarios if not specified.

3.2.1 TASK SETUP

ToolBench contains diverse user requests with a massive amount (over 16k) of real-world API
tools, which are publicly available on the RapidAPI website. The testset is categorized into six
distinct groups and contains 1200 instructions (200 each): I1-inst., I1-tool, I1-cat., I2-inst, 12-cat.,
and I3-inst. Groups labeled with I1, 12, I3 include single-tool tasks, intra-category multi-tool tasks,
and extra-category multi-tool tasks, respectively. Groups labeled with “inst.”, ’tool”, “’cat.” include
unseen user instructions, unseen tools, and unseen categories (e.g. sports, entertainment) of tools,
respectively. Two evaluation metrics are designed based on ChatGPT: (1) Pass Rate, calculated
by the proportion of instructions successfully completed within a limited budget; (2) Win Rate
measured by asking a ChatGPT evaluator to select its preference for two solution paths. For each
user instruction (e.g. “Can you recommend some popular restaurants within Skm to hold a party?”),
the model calls an API and responds to the query based on the tool output.

ToolBench also provides 126k instruction-solution pairs for training, which are generated with GPT4
and depth-first tree search (DFS). GPT-4 gains access to different reasoning paths by choosing ei-
ther to continue the current node or give up and expand a new node. On top of that, we extract
unsupervised tool execution data and generate 650k self-supervised data of meta-tasks following the
procedure in Figure[3] We then conduct instruction tuning based on the mixed data and LLaMA3-
8B-instruct model, trained for 1 epoch to avoid overfitting. LLaMA3-solution is trained for 2 epochs
following the original configuration in ToolBench. Both the solution data and the meta-task data
share the same loss setting as we construct the metaset as QA pairs. The context-aware states are
generated with the open-sourced LLaMA3-70B-instruct model. All evaluated LLMs are prompted
in the ReAct manner to leverage their reasoning ability. Other model implementation details are in
line with that described in section 4.1.2.

BFCL benchmark is established mainly for the purpose of zero-shot evaluation without holistic
training data. The benchmark contains 4251 testing cases in total and is categorized into non-live
(self-designed), live (user-contributed), multi-turn, and Hallucination (relevance or irrelevance de-
termination) groups. The model performance is measured by action accuracy with Abstract Syntax
Tree (AST) [Patil et al.| (2023]). We test the MetaTool model trained with ToolBench data on BFCL
to evaluate the zero-shot ICL ability and generality of our methodology.

3.2.2 RESULTS ANALYSIS

As the ToolBench results shown in Table [3] MetaTool (8B) achieves the second-best performance
across all groups merely behind GPT-4, superior to other models including ChatGPT (+8.1% pass
rate) and training-based ToolLLaMA-2 (7B)|Qin et al.| (2023c) (+16.9% pass rate, +8.5% win rate).
Especially, our method significantly improves the performance of LLaMA3 (originally incapable)

Under review as a conference paper at ICLR 2025

I1-Inst. I1-Tool 11-Cat. 12-Inst. 12-Cat. I3-Inst. | Averages

Models PassT Wint | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win
ChatGPT 41.5 - |410 - |41.0 - [345 - |465 - |220 - |[378 -
Claude-2 55 31035 27.8|55 338| 6.0 350| 6.0 31.5(14.0 475| 6.8 344
GPT-4 53.5 60.0 |50.0 58.8|53.5 63.5(/67.0 65.8|72.0 60.347.0 78.0 |57.2 64.4

ToolLLaMA-2 25.0 45.0 |29.0 42.0|33.0 47.5|30.5 50.8|31.5 41.8|25.0 55.0[29.0 47.0

LLaMA3-8B-inst. | 0.0 0.0 [0.0 00|01 00[00 00]01 01]00 00|00 0.0
LLaMA3-2-stage | 31.4 43.6 |35.6 44.8|40.3 44.0|40.4 48.0|36.1 46.8|285 58.0 347 47.2
LLaMA3-solution | 32.1 453 {39.0 43.9|36.4 43.0|40.1 52.5|40.1 434|356 61.8|372 483
MetaTool (8B) 425 52.1 [41.8 513433 46.1|52.0 549|500 54.0|45.5 745459 55.5

Table 3: ToolBench results. ChatGPT doesn’t have the Win Rate score since all other Win Rates
are measured by comparing with its solution paths.

Models I1-Inst. 11-Tool I1-Cat. 12-Inst. 12-Cat. I3-Inst. Averages

PassT Win?T | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win
2stage-full 248 43.0 |30.0 439]36.0 43.0]29.2 52.1|289 37.7|23.7 56.8|28.5 46.1
2stage-qv 314 43.6 |35.6 448|403 44.0|404 48.0|36.1 46.8|28.5 58.0|34.7 472

solution-lepo | 309 45.0 | 373 449|341 420|395 513|360 424|328 61.0|35.1 478
solution-2epo | 32.1 45.3 | 39.0 43.9|36.4 43.0|40.1 52.5|40.1 434|356 61.8|37.2 483
MetaTool-1epo | 42.5 52.1 |41.8 51.3|43.3 46.1|52.0 54.9|50.0 54.0 | 455 74.5|459 555
MetaTool-2epo | 35.7 442 |35.6 43.7|39.0 47.6|45.6 51.5|46.1 49.5|39.5 68.3|403 50.8

Table 4: Ablation results on ToolBench. ’2stage-qv’ targets only query and value modules and
"2stage-full’ targets all parameter modules during the first stage training on metasets. ’solution-
xepo’ denotes baseline LLaMA3-solution trained with x epochs.

compared to LLaMA3-solution which is merely trained on solution data (+8.7% pass rate, +7.2%
win rate). The comprehensive advantages show the effectiveness of meta-task augmentation. Be-
sides, the notable superiority of GPT-4 can be partly attributed to the fact that all the training and
testing instructions are generated with itself. Thus GPT-4 may be more familiar with the distribution
and inner motivation of these instructions.

In Table] we study the influences of several hyper-settings chosen for our baselines:(1) Compar-
ing with targeting only query and value modules (2stage-qv), The relatively weaker performance
of LLaMA3-2stage-full (-2.2%/-1.1% on average) suggests that training on metasets targeting full
parameter modules may let the model overfit the QA tasks and hinder the subsequent training on
solution data.(2) Results of both LLaMA3-solution and MetaTool trained with 1 epoch or 2 epochs
are shown. While early stopping for training merely on solution data harms the performance (-
2.1%/-0.5% on average), early stopping for MetaTool improves the performance (+5.6%/+4.7%
on average). The contradiction suggests that training too much on meta-tasks QA data may cause
overfitting and weaken the ability of planning actions. Also, learning meta-tasks can bring suffi-
cient knowledge about tools. That helps the LLMs to understand the expert solutions and learn the
tool-use tasks faster, thus reduce the need for the second epoch training.

Table [5] shows the zero-shot performance on the BFCL benchmark. It’s worth noticing that except
for the sets of non-live simple, live simple, and multi-turn base, zero-shot comparison on other test
sets is less fair, since MetaTool is merely trained in ToolBench scenarios with a unique task pattern
(fixed system prompt) that the model calls a single tool once a time then waits for the tool out-
put. For example, in the “multiple” tasks LLMs are asked to call multiple tools in one response.
Nonetheless, we modify the parser of MetaTool to continue generating tokens to fit the requirements
of multiple and parallel scenarios. In the “irrelevance” tasks, LLMs have access to tools irrelevant
to the instruction and should give up calling any tools, which never occurs in ToolBench scenarios.
Therefore in the first place, we count the average accuracy (Simple Ave. in Table[5) of three fair sets
and observe that MetaTool surpasses LLaMA3-8B-instruct (+5.3%), LLaMA3-solution (+3.3%) and
Hermes-2-theta [Teknium| (+8.1%) which is also trained based on LLaMA3-8B-instruct, and is close
to the latest OpenAl ol-mini (-1.6%). It’s also impressive that MetaTool obtains the highest 78.3%
accuracy on the non-live simple set, 17.7% higher than the 1st rank model GPT-4-turbo. Despite the

Under review as a conference paper at ICLR 2025

Models Non-live Live Multi Tarn| Hal. |[Simple
simple multiple parallel M&P|simple multiple parallel M&P| base rel. irrel.| Ave.

GPT-4-turbo 60.6 91.0 900 89.0|67.8 745 750 625 335 70.7 79.8| 54.0

ol-mini 689 8.0 735 705|628 651 688 583 16.0 46.3 88.7| 49.2

Hermes-2 (8B) 61.3 825 755 750|558 531 438 417 1.5 51.2 62.7| 39.5

LLaMA3-8B-inst.| 63.1 855 51.5 44 | 609 608 375 20.8 3.0 75.6 27.4| 42.3
LLaMA3-2-stage | 66.8 60.0 50 6.0]539 331 16.8 6.3 5.0 98.1 10.5| 419
LLaMA3-solution| 71.3 64.0 135 10.0| 56.6 349 375 125 5.0 100.0 8.3 | 44.3
MetaTool (8B) 783 550 66.0 635|581 50.1 18.8 37.5 6.5 100.0 25.4| 47.6

Table 5: BFCL results. M&P denotes the test set of multiple parallel. Hal., rel., and irrel. represent
the relevance and irrelevance set of the hallucination group. Simple Ave. denotes the average
accuracy of non-live simple, live simple, and multi-turn for a fair comparison. All scores represent
the success rates for the test sets.

transferring barriers, MetaTool still achieves moderate performance on the other sets (e.g. multiple,
parallel, hallucination) with an average of 52.0% accuracy, significantly higher than the 35.1% of
LLaMA3-solution (+16.9%). Overall, the zero-shot results on BFCL clearly demonstrate the ex-
ceptional generalizability of MetaTool. With additional data augmentation from diverse scenarios,
MetaTool has the potential for significant improvement.

3.3 QUALITATIVE CASE OF META-TASKS

As shown in Figure] we showcase a qualitative case of meta-tasks data M. The tool
search_by_title_for MDBList is provided on the real-world API website RapidAPI. The parameters
are named casually and we can hardly derive the function of them just by letters (e.g. ’s’, 'm’). The
meta-tasks help the model learn the function and usage of these parameters. For example, from the
QA pair of Effect meta-task the model observe that feeding ’s’ as ’friends’, 'm’ as movie’, and '’
as 1 results in a movie titled *friends’. From the Input boundary meta-task, the model learns that ’tv’
is not a valid value for parameter 'm’. With multiple QA pairs for each tool, our model is able to
learn a more robust tool understanding from actual instances besides descriptions. The tool learning
benefits from this paradigm especially in real-world scenarios where the tool descriptions may be
diverse and noisy.

4 RELATED WORKS

4.1 TOOL LEARNING

Recent studies have shed light on the potential of utilizing tools to augment LLMs with external fac-
tual knowledge Qin et al.|(2023a); Nakano et al.| (2021); Song et al.|(2023)); Hao et al.| (2024); Shen
et al.| (2024)); |Gao et al.| (2023)); Wu et al.| (2023); |Qian et al.| (2023)); Zhuang et al.| (2024)); Schick
et al.[(2024)) which is targeted at tool-augmented question-answering scenarios, towards the ‘tools
for AI’ purpose in general. On the other side, With the burgeoning intelligence in reasoning and
perception, LLMs’ tool-use capability can be widely applied in the automation of various domains
including Embodied AI|Wang et al.| (2024c:b), web manipulation [Rawles et al. (2023); |Hong et al.
(2024); |Yang et al.|(2023)); Deng et al.[(2024); |He et al.[(2024);Zhou et al.| (2023)), and image/video
editing Wang et al.| (2024a)); |Argaw et al|(2022); Hang et al.| (2024); |[Fu et al.| (2023).This line of
work is intended for tool-oriented planning scenarios for the ‘Al for tools’ purpose. Effectively mas-
tering complex tools challenges the model to comprehend the precondition and potential outcome
of using tools. In this paper, we aim to facilitate LLMs for both tool-oriented and tool-augmented
tasks by learning robust tool understanding.

4.2 TOOL UNDERSTANDING

As noted by |[Hernik & Csibral (2009), when learning to utilize a specific tool, children perceive it
as an object with particular functions, engaging in a cognitive process to understand its purpose and
operation. Analogously, a comprehensive understanding of the tools’ functionalities is indispens-

Under review as a conference paper at ICLR 2025

Meta-task demonstrations

Tool: search_by_title_for_ MDBList. Search for Movies or TV Shows by title, include option
year or mediatype filter to narrow your results.

Parameters: 1) ’s”: title to search; 2) ’y”: year to limit title search in format YYYY; 3)
”m”: search for "movie” or ’tv show”. Leave empty for both; 4) ”’1”’: limit return items. Use
number from 1 to 100.

Effect

-Q: When using tool ’search_by_title_for MDBList" with input {’s”: “friends”, "m”:
“movie”, ”1”: 1}, what would be the output/result?

-A: The result would be the search result for the movie titled "friends” limited to 1 item.
Decision-making

-Q: What function should be called and what parameters should be fed into it to get “’the
top-rated movies from around the year 1990, limited to three results.”? Examples: “The
Unforgettable Director of Love Movies”, ~’Killed the Family and Went to the Movies”, ...
-A: Tool: search_by_title_for MDBList. Inputs: {”s”: “the top-rated movies”, ”y”: 1990,
”m”: “movie”, ”1”: 3}

Input boundary

-Q: Would {”s”: “family”, "m” “tv”’} be considered a suitable input for tool
search_by_title_for MDBList?

-A: No, since ’tv” is invalid for parameter "m”.

Output boundary

-Q: Is it feasible to get the movies titled by “friends” in Singapore as the result with tool
search_by_title_for MDBList?

-A: No, it’s infeasible since it’s beyond the capability of the tool.

Counterfact

-Q: When using tool ’search_by_title_for MDBList" with input {’s”: “friends”, "m”:
“movie”, "I”: 1}, I get the movie titled “friends” limited to 1 item as the output. What
would be the new output if I change the input 1" as 5?

-A: The new tool output is:the movie titled “friends” limited to 5 items.

Figure 4: Qualitative case for meta-task generation. Given a real-world tool (API), we obtain a set
of QA pairs for 6 meta-tasks following the 2-step procedure illustrated in Figure [3]

able for enabling the controller to use tools proficiently. In real-world scenarios, tools are typically
accompanied by a manual (or tutorial), which provides sufficient relevant details about their func-
tionalities and usage. Endowed with strong few-shot learning [Brown et al.| (2020) and zero-shot
learning capabilities, foundation models can be prompted to unravel tools’ func-
tionalities and comprehend how to use them. To this end, we can construct suitable task-specific
prompts either through manual design [Vemprala et al| (2024) or retrieval (2022). How-
ever, prompting is restricted by input context length, thus the situation may be more challenging with
multiple complex tools with long descriptions. While most training-based tool learning methods rely
on extensive expert-annotated solution data for goal-oriented tasks, the knowledge contained in the
tool execution process itself remains unutilized. We propose a self-supervised data augmentation
method to efficiently endow LLMs the comprehension of a set of tools.

5 CONCLUSION

In this work, we introduced MetaTool, an efficient and generalizable method that facilitates tool
learning with task-agnostic comprehension. This is achieved by deriving self-supervised meta-task
data from tool execution actions. Augmented the meta-tasks into either complex toolset fine-tuning
or large-scale instruction tuning, our model exhibits sophisticated tool mastery as well as generality
in in-context learning. Evaluated on multiple tool use benchmarks, MetaTool outperforms models
trained on expert solutions and showcases comparable performance with ChatGPT in a size of 8B.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD .md.

Dawit Mureja Argaw, Fabian Caba Heilbron, Joon-Young Lee, Markus Woodson, and In So Kweon.
The anatomy of video editing: A dataset and benchmark suite for ai-assisted video editing. In
European Conference on Computer Vision, pp. 201-218. Springer, 2022.

Elias Bareinboim, Andrew Forney, and Judea Pearl. Bandits with unobserved confounders: A causal
approach. Advances in Neural Information Processing Systems, 28, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Harrison Chase. Langchain. 2022. URL https://github.com/hwchasel7/langchain,

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guid-
ing instruction-based image editing via multimodal large language models. arXiv preprint
arXiv:2309.17102, 2023.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640, 2023.

Tiankai Hang, Shuyang Gu, Dong Chen, Xin Geng, and Baining Guo. Cca: Collaborative competi-
tive agents for image editing. arXiv preprint arXiv:2401.13011, 2024.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Mikolaj Hernik and Gergely Csibra. Functional understanding facilitates learning about tools in
human children. Current opinion in neurobiology, 19(1):34-38, 2009.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281-14290, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/hwchase17/langchain

Under review as a conference paper at ICLR 2025

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Judea Pearl. Causal inference in statistics: An overview. 2009.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic
books, 2018.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentangling
abstract and concrete reasonings of large language models through tool creation. arXiv preprint
arXiv:2305.14318, 2023.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning
Ding, Huadong Wang, et al. Webcpm: Interactive web search for chinese long-form question
answering. arXiv preprint arXiv:2305.06849, 2023a.

Yujia Qin, Shengding Hu, Yankai Lin, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023c.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv preprint
arXiv:2306.06624, 2023.

Teknium. Hermes-2-theta-llama-3-8b. URL https://huggingface.co/NousResearch/
Hermes—-2-Theta—-Llama—3—-8B.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. IEEE Access, 2024.

Bryan Wang, Yuliang Li, Zhaoyang Lv, Haijun Xia, Yan Xu, and Raj Sodhi. Lave: Llm-powered

agent assistance and language augmentation for video editing. arXiv preprint arXiv:2402.10294,
2024a.

12

https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B
https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B

Under review as a conference paper at ICLR 2025

Xiaohan Wang, Yuehu Liu, Xinhang Song, Yuyi Liu, Sixian Zhang, and Shuqgiang Jiang. An in-
teractive navigation method with effect-oriented affordance. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16446-16456, 2024b.

Xiaohan Wang, Yuehu Liu, Xinhang Song, Beibei Wang, and Shuqiang Jiang. Camp: Causal multi-
policy planning for interactive navigation in multi-room scenes. Advances in Neural Information
Processing Systems, 36, 2024c.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,

Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Berkeley function calling leaderboard. 2024.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Junzhe Zhang and Elias Bareinboim. Markov decision processes with unobserved confounders: A
causal approach. Purdue Al Lab, West Lafayette, IN, USA, Tech. Rep, 2016.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig.
Docprompting: Generating code by retrieving the docs. arXiv preprint arXiv:2207.05987, 2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolga: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36,
2024.

13

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPTS

Context Generation Prompt

System

You are a helpful assistant. You will first be provided with the documentation of several
tools and their functions/APIs. Then, given the called function, the function input, and the
tool output/result from the user, your task is to provide the context that represents the output.
Instructions

1. Review the provided tool documentation to understand the available functions and their
purposes.

2. Identify the called function and its input parameters.

3. Describe what context the result represents based on the function and input.

Examples

Tool documentation. Tool: Weather; Function/API: get_weather; Parameters: city (string),
data (string)

Input. Called function: ger_weather; Function input: {’city’: New York’, *data’: *July
10th’}; Result: “sunny’

Output. The weather in New York on July 10th.

Notice

-Be precise and DO NOT include the details in the result.

Figure 5: Prompt for generating contextual result given the tool description, action, and the original
action result.

Self-play Trial Prompt

You are AutoGPT, you can use many tools(functions) to do the following task.

First, I will give you the task description, and your task start.

At each step, you need to give your thought to analyze the status now and what to do next,
with a function call to actually execute your step. Your output should follow this format:
Thought:Action: Action Input:

After the call, you will get the call result, and you are now in a new state.

Then you will analyze your status now, then decide what to do next...

After many (Thought-call) pairs, you finally perform the task, and then you can give your
final answer.

Remember:

1. the state change is irreversible, you can’t go back to one of the former states. If you want
to restart the task, say "I give up and restart”.

2. All the thought is short, at most in 5 sentence.

3.You can do more than one try, so if your plan is to continuously try some conditions, you
can do one of the conditions per try.

Let’s Begin!

Task description: You should use functions to help handle real-time user queries. Remem-
ber:

1.ALWAYS call the “Finish” function at the end of the task. The final answer should contain
enough information to show to the user. If you can’t handle the task, or you find that function
calls always fail(the function is not valid now), use function Finish(”’give up and restart”).
2.Do not use origin tool names, use only subfunctions’ names.

You have access to the following tools: (tool descriptions)

{’name’: ’Finish’, ’description’: ’If you believe that you have obtained a result that can
answer the task, please call this function to provide the final answer.’ }

Figure 6: Prompt for search for solution paths through self-play trials. The successful trials are
picked according to the final answer. Unsupervised tool actions can be extracted from all trials.

14

Under review as a conference paper at ICLR 2025

A.2 QUALITATIVE CASE STUDY

Context Generation Examples

Example 1

Input for LLMs: Tool: fixtures_for_golf-leaderboard (Lists tournament fixtures for a given
tour_id and season_id).

Input parameters: {”tour_id”: 1, ”season_id”: 2023}.

Result: 72023 European Tour”

Output (contextual result): Golf fixture held in 2023 season with tour_id 1 is 2023
European Tour.

Example 2

Input for LLMs:

Tool: find_place_by_text (Search for places by text string).

Input parameters: {’text”: “national parks in United States”}.

Result: {"name’: ’Yellowstone National Park’, *address’: *United States’, ’phone_number’:
’+13073447381°, *website’: "https://www.nps.gov/yell/index.htm’ }

Output (contextual result): Details of national parks in the United States such as Yellow-

stone National Park.

Example 3

Input for LLMs:

Tool: get_10000_anime_quotes (Access best quality anime quotes from over 10000+ animes.
Get anime quotes based on anime search.)

Input parameters: {”’search”: "Naruto”, ”page”: 1}

Result: [’'Those who do not understand true pain can never understand true peace.’, 'Things
never go as planned in this curse world.’, ’Becoming the Hokage doesn’t mean people will
acknowledge you.’]

Output (contextual result): A list of quotes from the anime “Naruto” retrieved from page
1 including *Things never go as planned in this curse world’.

Figure 7: Examples of generating contextual results with LLMs given the tool descriptions, actions
and action results.

We present several examples of context generation (mentioned in Section 2.2) and the prompt in
Figure 7] and Figure [5] The LLM worker is only asked to complete the contextual information for
the results returned by the tool. In the Effect meta-task, the model learns to predict the contextual
results given the input parameters, which helps it better understand the tool mechanism. Otherwise
asking the model to predict merely the retrieval results (e.g. 2023 European Tour, Yellowstone
National Park) is impractical and not beneficial. No other information or prior knowledge from the
LLM worker are needed and provided to MetaTool.

As showcased in Figure[8] the agent is required to construct stacks containing a green block on top
of a yellow block from a pile of 4 blocks. With mere descriptions of tools in the prompts, LLaMA3
fails to understand the precondition of using tools resulting in invalid actions. Training on tool-
oriented solution data, LLLaMA3-solution attempts to lift the yellow block successfully but fails to
sequentially achieve the task goal and falls into repetitive loops. The proposed MetaTool model
achieves the target state with an effective action sequence (although still not the optimal efficiency)
and corresponding reasoning. These 3 models correspond to the 3 paradigms illustrated in Figure[T}
The results show that LLMs can learn tool use better on the basis of robust tool understanding.

15

Under review as a conference paper at ICLR 2025

A Case Study of BlocksWorld Task

Initial state: Hand empty. red block on the table. green block on top of red block. white block on top of green block. yellow block on top of white block.

Target state: green block on top of yellow block. f— —— ||
—n
LLaMA3 LLaMA3-solution MetaTool
Step 0: Pick('green') Step 0: Pick('red') Step 0: Pick('green’)
-Thought: The target state is to have the green -Thought: Since the red block is not involved in the
block on top of the yellow block. To achieve this, : target state now, it should be placed on the table Step 4: Pick('yellow') —_ .

i need to remove the blocks on top of the green first. The first step should be picking up the red block : -Thought: Since the top block in green is not clear now, |

block and then stack the green block on top of using the 'pick' function with the appropriate should first lift the yellow block on top of the stack.

the yellow block. input'red'. Step 5: Stack('table') .
Step 1: Pick('red") Step 1: Pick('green') _, . Step 6: Pick('green’)
"

Step 2: Pick('green’) Step 2: Pick('yellow') Step 7: Pick('white') 2

Step 3: Pick('white') -Thought: Since the bottom block is yellow and clear, : Step 8: Stack('table) ‘ >

i should utilize the 'pick' function with input 'yellow' Step 9: Pick('green’) e

Step 15: Pick('green') —> . to lift the yellow block off the pile. 4 -Thought: Since the bottom block in yellow is clear now, |

Exceed max step number Step 3: Stack('table') %, should pick the green block up first. By doing so, the green

Invalid actions Step 4: Pick('green') % block would be off and ready to be stacked on yellow.

Step 5: Pick('red") - - Step 10: Stack('yellow')
Step 6: Pick('yellow') -Thought: since i have the upper block in green color now,
Step 7: Stack('table’) I should place it on the yellow block. By doing so, my hand
Step 8: Pick('yellow') . - would be empty and the green block would be on top of
Step 9: Stack('table') — = the yellow block, which meets the target state.
Exceed max step number Repetitive actions - —--—

Task successful!

A\ J

Figure 8: Case study of MetaTool compared with 2 baselines on BlocksWorld task. Actions in red
denote invalid ones (e.g. pick up a block at the bottom). LLaMA3-solution is the LLaMA model
trained on task solution data.

16

Under review as a conference paper at ICLR 2025

Meta-task demonstrations:
* [Effect
-Q: The current text is 'uv'. When using tool 'Add' with input 'd', what would be the output/result?

-A: The result would be 'uvde’.

* Decision-making

-Q: If the original text is 'uvde' and the desired outcome using the 'Swap'is 'vude', what is the
necessary input for this function?

-A: The tool input is 'u'.

* Input

-Q: Given the existing text 'uv', would 'hi' be considered a suitable input for the function 'Add'?

-A: No, it's invalid since 'Add' only takes one letter as the input.

* Qutput
-Q: The current text is 'uvde'. Is it feasible to get 'dvue' as the result with the tool 'Swap'?

-A: No, it's infeasible since 'Swap' can only change the positions of two letters once.

» Counterfact
-Q: When using tool 'Add’ with input 'd’, | get 'uvde’ as the output. What would be the new output if |
change the input as 'e'?

-A: The new tool output is: 'uvef'.

Task-oriented solutions:

-User: target text: 'word'

-Assistant: Thought: The current text " does not contain all the letters in the target text. So | should...
Action: Add Action input: 'v'.

-Function: 'vw' step O

-Assistant:Thought:...Action: Add Action input: 'd’

-Function: 'vwoprsde' Step 3

-Assistant: Thought: Although the current text contain all the letters in the target text, the order of
those letters does not match. So | should... Action: Swap Action input: 'p'

-Function: 'vworpsde' step %

-Function: 'vwordpse' step 6

task successful !

Figure 9: Qualitative cases for meta-tasks in tool-oriented scenario.

17

	Introduction
	Approach
	Self-supervised Meta-tasks for Tool Understanding
	Metaset Construction
	Tool Learning Augmented with Meta-tasks

	Experiments
	Tool-oriented Scenarios
	Task setup
	Implementation details
	Results analysis

	Tool-augmented Scenarios
	Task setup
	Results analysis

	Qualitative Case of meta-tasks

	Related Works
	Tool learning
	Tool understanding

	Conclusion
	Appendix
	Prompts
	Qualitative Case Study

